104 research outputs found

    PASCAL: Timing SCA Resistant Design and Verification Flow

    Full text link
    A large number of crypto accelerators are being deployed with the widespread adoption of IoT. It is vitally important that these accelerators and other security hardware IPs are provably secure. Security is an extra functional requirement and hence many security verification tools are not mature. We propose an approach/flow-PASCAL-that works on RTL designs and discovers potential Timing Side-Channel Attack(SCA) vulnerabilities in them. Based on information flow analysis, this is able to identify Timing Disparate Security Paths that could lead to information leakage. This flow also (automatically) eliminates the information leakage caused by the timing channel. The insertion of a lightweight Compensator Block as balancing or compliance FSM removes the timing channel with minimum modifications to the design with no impact on the clock cycle time or combinational delay of the critical path in the circuit.Comment: Total page number: 4 pages; Figures: 5 figures; conference: 25th IEEE International Symposium on On-Line Testing and Robust System Design 201

    Towards Multidimensional Verification: Where Functional Meets Non-Functional

    Full text link
    Trends in advanced electronic systems' design have a notable impact on design verification technologies. The recent paradigms of Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) assume devices immersed in physical environments, significantly constrained in resources and expected to provide levels of security, privacy, reliability, performance and low power features. In recent years, numerous extra-functional aspects of electronic systems were brought to the front and imply verification of hardware design models in multidimensional space along with the functional concerns of the target system. However, different from the software domain such a holistic approach remains underdeveloped. The contributions of this paper are a taxonomy for multidimensional hardware verification aspects, a state-of-the-art survey of related research works and trends towards the multidimensional verification concept. The concept is motivated by an example for the functional and power verification dimensions.Comment: 2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC

    Efficient Fault Injection based on Dynamic HDL Slicing Technique

    Full text link
    This work proposes a fault injection methodology where Hardware Description Language (HDL) code slicing is exploited to prune fault injection locations, thus enabling more efficient campaigns for safety mechanisms evaluation. In particular, the dynamic HDL slicing technique provides for a highly collapsed critical fault list and allows avoiding injections at redundant locations or time-steps. Experimental results show that the proposed methodology integrated into commercial tool flow doubles the simulation speed when comparing to the state-of-the-art industrial-grade EDA tool flows.Comment: arXiv admin note: substantial text overlap with arXiv:2001.0998

    Mixed-level identification of fault redundancy in microprocessors

    Full text link
    A new high-level implementation independent functional fault model for control faults in microprocessors is introduced. The fault model is based on the instruction set, and is specified as a set of data constraints to be satisfied by test data generation. We show that the high-level test, which satisfies these data constraints, will be sufficient to guarantee the detection of all non-redundant low level faults. The paper proposes a simple and fast simulation based method of generating test data, which satisfy the constraints prescribed by the proposed fault model, and a method of evaluating the high-level control fault coverage for the proposed fault model and for the given test. A method is presented for identification of the high-level redundant faults, and it is shown that a test, which provides 100% coverage of non-redundant high-level faults, will also guarantee 100% non-redundant SAF coverage, whereas all gate-level SAF not covered by the test are identified as redundant. Experimental results of test generation for the execution part of a microprocessor support the results presented in the paper.Comment: 2019 IEEE Latin American Test Symposium (LATS

    Understanding multidimensional verification: Where functional meets non-functional

    Get PDF
    Abstract Advancements in electronic systems' design have a notable impact on design verification technologies. The recent paradigms of Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) assume devices immersed in physical environments, significantly constrained in resources and expected to provide levels of security, privacy, reliability, performance and low-power features. In recent years, numerous extra-functional aspects of electronic systems were brought to the front and imply verification of hardware design models in multidimensional space along with the functional concerns of the target system. However, different from the software domain such a holistic approach remains underdeveloped. The contributions of this paper are a taxonomy for multidimensional hardware verification aspects, a state-of-the-art survey of related research works and trends enabling the multidimensional verification concept. Further, an initial approach to perform multidimensional verification based on machine learning techniques is evaluated. The importance and challenge of performing multidimensional verification is illustrated by an example case study
    • …
    corecore